
Model 7810 8-to-1 HD-15 Switch with 10 BaseT/100 BaseTX
LAN Access

INTRODUCTION:
The Model 7810 8-to-1 HD-15 Switch with 10 BaseT/100 BaseTX LAN Access, allows the user the capability
of sharing a single port HD-15 interface device connected to the “COMMON” port among eight other devices
connected to the Channel 1-8 ports with local and
remote access functionality. Remote access can be
accomplished by a 10-Base-T/100 BaseTX connec-
tion.
Electro Standards offers hundreds of copper and fiber
optic data network switches. Customized switches are
manufactured every day. Contact Electro Standards,
401-943-1164, eslab@ElectroStandards.com

• IP Addressable For Critical Network Alternate-Path Switching!

Application Note for Model 7810
Remote Control via Ethernet using Visual Studio and Socket Programming

~ � ~ Pub. 4501-01

1. Remote Switching of the Model 7810
The 7810 switch has a 10 Base-T/100 interface to the outside world allowing a user to remotely control its
function. The user needs to construct the program logic to perform the following functions…
• Open an Ethernet connection to the 7810 switch.
• Send log in command over Ethernet connection
• Send switch commands over Ethernet connection
• Send lockout front panel buttons command over Ethernet connection if it is desired to remove external
 access to switching
• Send set and confirm password commands if additional security is desired
• Send Status query command to update controlling computer as to the current
 o Switch position
 o Front Panel Lockout status

Sending the commands is relatively straightforward. The section entitled “System Details for Programmers”
will give you additional information on what to expect for replies from the switch and what you need to do
in each case.

APPLICATION NOTE
Model 7810

Catalog No. 3078�0

36 Western Industrial Drive, Cranston, RI 02921 www.ElectroStandards.com
Tel: 401-943-1164 Fax:401-946-5790 E-mail:eslab@ElectroStandards.com

~ � ~

Command Parameter Function Response Comments

CTRL-S (13H)
1 digit posi-
tion code
(1-8)

Switch to position “00x POSITION: x”, or
“01x POSITION:x, LOCKED”, or
“099 INVALID POSITION CODE”

Works only when logged in

CTRL-P (10H) N/A Query for Status “00x POSITION: x”, or
“01x POSITION: x, LOCKED”

Works only when logged in

CTRL-L N/A Lockout front
panel

“01x POSITION: x, LOCKED” Works only when logged in

CTRL_U N/A Unlock front
panel

“00x POSITION: x” Works only when logged in

CTRL-E 6 digit
password

login “201 WELCOME!”, or
“102 INVALID PASSWORD!”

Works only when logged out

CTRL-X N/A Logout (a.k.a
session end)

“104 BYE!” Works only when logged out

CTRL-N 6 digit
password

New password “301 PLEASE CONFIRM NEW
PASSWORD!”

Works only when logged out

CTRL-M
6 digit
password

Confirm new
password

“303 NEW PASSWORD ACCEPT-
ED!”, or“302 PASSWORD MIS-
MATCH!”

Works only when logged in

CTRL-V N/A Firmware version
and compile date

“901 M7810 firmware ver x.xx,
Compiled MMM DD YYYY,”

Works anytime

TABLE 1. Model 7810 Command Set

�.� Command Set Table
The table below is the complete command set for the 7810 switch

�.� Ethernet Access
The 7810 switch is accessible through port 10001 at the IP Address assigned to it in your network configura-
tion. The hardware is configured such that port 10001 will accept control characters and parameters via raw
sockets or using the slightly more complex telnet forms of communication. In this way the user has the choice
of using, for example, the raw sockets form of communications with the freely available Hyper-Terminal ™
program, or the telnet utility available via the windows command line.
You would configure a Hyper-Terminal session as shown below…

APPLICATION NOTE
Model 7810

Catalog No. 3078�0

Pub. 4501-01

36 Western Industrial Drive, Cranston, RI 02921 www.ElectroStandards.com
Tel: 401-943-1164 Fax:401-946-5790 E-mail:eslab@ElectroStandards.com

Figure �. Hyper-Terminal Configuration for
Raw Socket Access to the Model 78�0

~ 3 ~

And as soon as you log-in you will see the following in the status windows of the hyperterminal utililty …

For telnet access simply do the following…
• Open a command prompt window
• At the prompt type “telnet <IPAddress> 10001
• Followed by the Enter key
• When you logon to the unit you will see…

Figure �. Appearance of Log In response
from the Model 78�0 on Hyper-Terminal

Figure 3. Appearance of Log In response
in Telnet Window

Pub. 4501-01

36 Western Industrial Drive, Cranston, RI 02921 www.ElectroStandards.com
Tel: 401-943-1164 Fax:401-946-5790 E-mail:eslab@ElectroStandards.com

Application Note
Model 7810

Catalog No. 3078�0

~ � ~

As the programmer, having a means to manually send commands to the switch and viewing how it responds
provides you with valuable insight on the unit’s operation.

�.3 Operational Details
The 7810 switch has two types of timeouts the programmer should be aware of…
• Inter-character timeout – if the time delay between consecutive characters received by the switch for an incomplete
 command is more than 2.5 seconds, the session will end and the user logged out. The unit will automatically send
 the following message to the remote user if the inter-character timeout occurs…”401 TIMED OUT, TRY AGAIN”.

• Session Timeout – if the time delay between commands exceeds 2 minutes, the session will end and the user
 logged out. The unit will automatically send the following message to the remote user if the session timeout
 occurs…”103 SESSION TIMED OUT!”.

�.3.� Real time Switching
If the user transmits the “CTRL-S” character followed by a single digit (1-8) and the operation successful,
the unit will reply with one of the responses detailed in Table 1.

�.3.� Status
If the user transmits the “CTRL-I” character and the operation successful, the unit will reply with one of the
responses detailed in Table 1.

�.3.3 Front Panel Buttons Lockout
If the user transmits the “CTRL-L” character and the operation successful, the unit will respond with the re-
sponse detailed in Table 1.

�.3.� Restoration of Front Panel Buttons
If the user transmits the “CTRL-U” character and the operation successful, the unit will respond with the
response detailed in Table 1.

�.3.5 Login
If the user transmits the “CTRL-E” character followed by six digits, and the operation successful, the unit will
respond with the response detailed in Table 1.

�.3.6 LogOut
If the user transmits the “CTRL-X” character and the operation successful, the unit will respond with the
response detailed in Table 1.

�.3.7 Set New Password
If the user transmits the “CTRL-M” character followed by six digits, and the operation successful, the unit
will respond with the response detailed in Table 1. This action must be successfully followed by the Confirm
New Password command in order for the new password to be accepted.

�.3.8 Confirm New Password
If the user transmits the “CTRL-M” character followed by six digits the unit will respond with one of the re-
sponses detailed in Table 1.

�.3.9 Retrieving firmware and compilation date
If the user transmits the “CTRL-U” character and the operation successful, the unit will respond as detailed
in Table 1.

�.3.�0 Reset Password to Default
When logged out, if the user transmits the “CTRL-R” character followed by the six digit character sequence
“123456” and the operation successful, the unit will respond as detailed in Table 1.

Pub. 4501-01

36 Western Industrial Drive, Cranston, RI 02921 www.ElectroStandards.com
Tel: 401-943-1164 Fax:401-946-5790 E-mail:eslab@ElectroStandards.com

Application Note
Model 7810

Catalog No. 3078�0

~ 5 ~

1.4 System Details for Programmers
At this point the command protocol for the 7810 has been covered and the user has been shown two ways
to access the switch remotely in order to manually exercise the command set. Next, comes the task of
programmatically performing the same tasks.

�.�.� Using Sockets in Visual Studio �005
Visual studio 2005 has simplified the task of permitting the user to communicate with remote devices via
Ethernet. The following basic steps are required…
• Open a connection between the local PC and the remote endpoint (7810).
• Specify the receiving data and send data callback functions
• Send commands and receive the replies.
• Close the connection, at your discretion, if it will be a long time between accesses. On the other hand, to avoid
 the session timeout you may want to send a periodic status command.

The following subsections provide C# examples of code used to facilitate the major core functions of Win-
dows Sockets. Knowledge of Windows™ programming, multi-threading, and callback functions is assumed.
If you have programmed Sockets in earlier versions of Visual Studio, you will find the .NET implementation
much simpler since it handles much of the threading sub-framework and callback mechanism internally. In
Visual C++ 6.0 and earlier the programmer was required to write the threading sub-framework and callback
mechanism manually unless they purchased a third-party module.

�.�.�.� Initialization of the Ethernet Port and opening a connection
The following code can be used to open a connection to a remote Ethernet endpoint…

public Int32 OpenConnection(string ipAddress, string port)
 {
 Int32 iRetValue = (Int32)ErrorCodes.NO_ERRORS;
 //
 // Initialize some parameters.
 //
 iSwitchPort = Int32.Parse(port);
 IPAddress = ipAddress;
 IPHost = Dns.GetHostEntry(IPAddress);
 IPAliases = IPHost.Aliases;
 IPAddresses = IPHost.AddressList;
 // create an instance of Socket object
 eslSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);
 // Create a new IP endpoint
 iep = new IPEndPoint(IPAddresses[0], iSwitchPort);
 // Be sure we set the IO as non-blocking
 eslSocket.Blocking = false;
 // Set callback to be called once the connection process has completed.
 callbackProc = new AsyncCallback(ESL7810SocketConnectionCallback);
 // Begin the Asynchronous connection to the designated endpoint.
 eslSocket.BeginConnect(iep, callbackProc, eslSocket);

 return iRetValue;
 }

Pub. 4501-01

36 Western Industrial Drive, Cranston, RI 02921 www.ElectroStandards.com
Tel: 401-943-1164 Fax:401-946-5790 E-mail:eslab@ElectroStandards.com

Application Note
Model 7810

Catalog No. 3078�0

private void ESL7810SocketConnectionCallback(IAsyncResult iar)
 {
 Socket ESL7810Socket = (Socket)iar.AsyncState;

 try
 {
 // Successfully complete the connection
 ESL7810Socket.EndConnect(iar);

 // Start the listener thread that listens for incoming data
 ESL7810Socket.BeginReceive(rcvBuffer, 0, rcvBuffer.Length, Socket-
Flags.None, ESL7810ReceiveCallback, ESL7810Socket);
 }
 catch (SocketException exSocket)
 {
 //
 // Unable to make a connection.
 //
 }
 }

public void CloseConnection()
 {
 eslSocket.Close();
 }

~ 6 ~

Once the connection is successful, the operating system signals the callback function where the user
can…
• Successfully complete the connection, and
• Setup the callback used to receive data.

When you’ve completed the operation, the socket connection can be closed and resources released by
the command.

Pub. 4501-01

36 Western Industrial Drive, Cranston, RI 02921 www.ElectroStandards.com
Tel: 401-943-1164 Fax:401-946-5790 E-mail:eslab@ElectroStandards.com

Application Note
Model 7810

Catalog No. 3078�0

private void ESL7810ReceiveCallback(IAsyncResult iar)
{
 Socket ESL7810Socket = (Socket)iar.AsyncState;
 int iBytesReceived = ESL7810Socket.EndReceive(iar);

 //
 // We have received a response and now must extract the bytes in the form of a
string
 //

 string strStringData = Encoding.ASCII.GetString(rcvBuffer, 0, iBytesReceived);

 //
 // Insert your code here to parse received data. Data should be a response
 // to the command issued.
 //

 }

private void ESL7810SendMessage(string strMessage)
 {
 Byte[] bMessage = new Byte[strMessage.Length];

 //
 // Now let’s convert the individual characters in the string
 // to bytes to make the message compatible with the asynchronous
 // sending framework.
 //

 for (int i = 0; i < strMessage.Length; i++)
 {
 Byte b = Convert.ToByte(strMessage[i]);
 bMessage[i] = b;
 }

 //
 // If here then we’ve taken the message and
 //

 IAsyncResult iar2 = eslSocket.BeginSend(bMessage, 0, bMessage.Length,
SocketFlags.None, callbackProc, eslSocket);
 eslSocket.EndSend(iar2);
 }

~ 7 ~

�.�.�.� Receiving Data
In the previous section, you executed a BeginReceive function which started a listener thread. When data
is received the “ESL7810ReceiveCallback” function will be called. An example of such a function is…

�.�.�.3 Sending Data
Sending data is done at the discretion of the user and can be invoked using the following sample code…

Pub. 4501-01

36 Western Industrial Drive, Cranston, RI 02921 www.ElectroStandards.com
Tel: 401-943-1164 Fax:401-946-5790 E-mail:eslab@ElectroStandards.com

Application Note
Model 7810

Catalog No. 3078�0

~ 8 ~

Please Note: The socket functions in this entire section should be wrapped in more ex-
tensive exception handling in the event there is a connection problem. The intellisense
feature which is part of the Visual Studio code editor will tell you which exceptions could
be returned by a function and you should handle each one of them.
�.�.�.� Implementation Details
In this section, the reader has been introduces to several example blocks of code to facilitate the opening
and closing of an Ethernet connection to a remote host. Furthermore, additional code examples were shown
to send and receive data from the endpoint.
This section provides the programmer with high level suggestions as to how to integrate this code into a
larger framework.

�.�.�.�.� Sending Commands
Sending commands is a relatively simple task. It is done at the discretion of the master program and nor-
mally done by simply making a call to a public function, which in turn calls the private function detailed in
section 1.4.1.3. As seen in 1.4.1.3, the send message function expects to receive a string representation of
the completed message. Therefore, your public function must…
• know which message is to be constructed,
• assemble the complete message into a string object using the data in Table 1, and
• Call the function in section 1.4.1.3 to have it transmitted to the switch.

The following flowchart describes a sample flow of logic…

Figure �. Simple Send Data program flow

Pub. 4501-01

36 Western Industrial Drive, Cranston, RI 02921 www.ElectroStandards.com
Tel: 401-943-1164 Fax:401-946-5790 E-mail:eslab@ElectroStandards.com

Application Note
Model 7810

Catalog No. 3078�0

~ 9 ~

�.�.�.�.� Receiving Data
When using callbacks, the user’s code doesn’t have to poll the Ethernet receive buffer, but simply wait until
the callback is executed where data becomes available in the receive buffer. Please keep in mind, as with
any multi-threaded environment, that your master code is designed such that time sensitive tasks are not
corrupted when the callback is asserted. Two types of information receipt are possible when dealing with
the 7810 switch…
• Intelligent switch feedback
• Simple switch feedback

The following flowchart illustrates an oversimplified view of the way the data receiving code/thread works in
partnership with main program code…

Figure 5. Simple Receive data program flow

Pub. 4501-01

36 Western Industrial Drive, Cranston, RI 02921 www.ElectroStandards.com
Tel: 401-943-1164 Fax:401-946-5790 E-mail:eslab@ElectroStandards.com

Application Note
Model 7810

Catalog No. 3078�0

~ �0 ~

�.�.�.�.�.� Intelligent switch feedback
Intelligent feedback assumes the program will parse the reply transmitted back from the switch and pro-
grammatically make decisions based on the findings. For example, consider the timeouts introduced back
in section 1.3. The programmer should be mindful of the fact that the switch will timeout if the gap in time is
greater than 2 minutes between messages and take the following two possible courses of actions…
• Periodically send a status message to the switch (< 2 minute interval) to prevent the timeout from occurring and
 simply introduce the desired command in place of the status message.
• Send a command to the switch (switch position, etc) without prior knowledge of the switch timing out…
 o Parse the response to find out if the switch has ended your session,
 o If session was ended, Send the login command from Table 1 and verify the response is a successful login.
 Then follow up with the original command.
 o If session was not ended then the command should’ve executed successfully. Parse the response for
 indications of success or failure.

In an intelligent feedback implementation, much of the switch usage intelligence is programmed into the
code and not the user itself. An example of this situation is a monitoring system or simulator.

�.�.�.�.�.� Simple switch feedback
Simple feedback assumes the master program (A GUI front end for example) simply sends the command
and passes the response back to a User Interface (UI). It is then up to the user to decide what to do with
the information. The user must interpret the condition of the switch from comparing the response to those
found in Table 1 and take the appropriate action via, buttons for example, on the UI. A simple feedback
implementation would be a simple GUI to exercise the switch’s functionality. The GUI may consist of a group
of buttons and other controls to actively issue commands and a window to display the text being transmitted
back from the switch. An example of such a GUI is shown below…
• One button for each switch position. The user clicks the button and the command to set the switch position to
 that particular channel is sent to the switch via a public send message described in section 1.4.1.4.1.
• One button of Log In/Log Off from the box. The GUI would know the current state of the box and decide the
 appropriate course of action. Clicking this button would send either the log on or log out message. In addition
 to logging in, the GUI could follow up with sending the Firmware version and compilation date request command
 and determine, before proceeding further, if the correct firmware is loaded.
• One button represents the action of setting and confirming the establishment of a new password. This means the
 GUI can manage first setting and then confirmation of a new password.
• One button represents the actions of toggling the front button panel lockout. Click once to send the command to
 lock the front panel, and again to unlock it.
• One button represents the action of querying the switch for position and lockout status. See table 1 for
 responses.
• A RichEditControl is the window in which the response from the switch will be displayed and viewed by the user.
 It occupies the entire upper half of the GUI.

Pub. 4501-01

36 Western Industrial Drive, Cranston, RI 02921 www.ElectroStandards.com
Tel: 401-943-1164 Fax:401-946-5790 E-mail:eslab@ElectroStandards.com

Application Note
Model 7810

Catalog No. 3078�0

private void butSetSwitchPos1_Click(object sender, EventArgs e)
 {
 //
 // Set Switch Position to 1
 //

 try
 {
 ESLEthernetCommsLayer.SwitchPosition(1);

 }
 catch
 {
 //
 // Display Error Message in
 //
 }
 }

~ �� ~

In code, when a button is clicked, another callback is typically used to facilitate the user’s request to send
commands to the switch. The example below is for switching positions…

The function name is “butSetSwitchPos1_Click” which is called after the button click action is complete. The
“sender” object contains information about the button itself, and “e”, a container for event specific data. The
name “ESLEthernetCommsLayer” was assigned the name of the reference to the code blob (in this case a
user control) which contains a public function to set the switch position. Naturally, the control handles the
process of assembling the string representing the command and passing it to the function that consumes
the string by dispatching it to the switch via ethernet Socket API calls seen in the code samples earlier.

Figure 6. Sample GUI to exercise
send/receive data functionality.

Pub. 4501-01

36 Western Industrial Drive, Cranston, RI 02921 www.ElectroStandards.com
Tel: 401-943-1164 Fax:401-946-5790 E-mail:eslab@ElectroStandards.com

Application Note
Model 7810

Catalog No. 3078�0

~ �� ~

�.�.�.�.�.3 Transition from Simple to Intelligent
Once having mastered the simple interface, the user has successfully performed the program logic to send
and receive data from the switch. From this point, the GUI can be modified, and thus a stepping stone, to
test program logic designed for intelligent control. For example, note the GUI has indicators to the right of
each switch button, spaces to display the firmware version and compile date, and lastly, an indicator to
show the user whether or not the front panel is locked out. These added indicators would be managed by
the “intelligence” code designed to parse the string of characters received from the switch, interpret the
data, and set the indicators in the appropriate state.
In this example, once the user logs on, the text of the log in/log out button would change to “Log out”. Once
a successful log in has occurred, the Firmware version request function could be dispatched and firmware
version and compilation data of the 7810 firmware read, parsed, and displayed in the spaces available.
When the user clicks a button to command a switch position, the response would contain the switch posi-
tion the firmware reports the current switch position and whether or not the switch is locked. In the GUI, the
indicator to the right the column of buttons corresponding to the position reported by the firmware should
be colored differently than the rest. If different than the requested switch position, then an error reported
on the display. In addition to the state of the lockout indicator (“YES”/”NO”) updated appropriately. Please
note that switch position and lockout statuses can be reconciled against last known states to verify that
your code is properly tracking this information.
Deliberately delay the time between commands to more than two minutes in order to test your logic that will
respond to the session having ended and not require the user to manually log back in.
Once the logic has been successfully tested in a GUI (responses in the view window match status of in-
dicators), you can incorporate it into the program logic for which it was originally intended and complete
testing.

1.4.2 How the 7810 Handles invalid commands
The 7810 will respond with the response “501 INVALID COMMAND” the very instant it recognizes the com-
mand to be invalid. This means that for every subsequent character received the entire response will be
sent again. If you write your controlling program to send the entire command at once without first checking
to see what is being received, then it is possible many invalid command replies could be received before
the unit finishes receiving your command.

Pub. 4501-01

36 Western Industrial Drive, Cranston, RI 02921 www.ElectroStandards.com
Tel: 401-943-1164 Fax:401-946-5790 E-mail:eslab@ElectroStandards.com

Application Note
Model 7810

Catalog No. 3078�0

