Resonant Drive Ocean Wave Energy Harvesting System
Designed for Sensor Buoys

Ocean Wave Energy Harvesting System developed by Electro Standards Laboratories and the University of Rhode Island.

Sensor Buoy converts wave motion into electricity allowing extended operation.

Benefits: Enhanced functionality, higher performance and continuous operation.

Dr. Raymond B. Sepe, Jr.
Vice President Research & Development
Electro Standards Laboratories
36 Western Industrial Drive
Cranston, RI, 02921
Tel: 401-943-1164
rsepe@ElectroStandards.com

www.ElectroStandards.com

Energy storage with ULTIMO, Lithium Ion Capacitor (LIC) from JSR Micro

High cycle life, up to 1 million cycles
Very low self discharge
High energy density, 12Wh/kg or 20Wh/L
High power density, 14kW/kg or 27kW/L
Light weight and low volume
High energy content (3300F cell)
~1.5 amp-hr
~4.4 watt-hrs
~15.8kJ

High efficiency at low currents, over 99%
High current capability, up to 1350A (1sec peak) or 200A continuous
No thermal runaway
Low lithium content
Environmentally safe
Wide temperature performance (-30˚C to 70˚C)
Quick charge times
Low impedance
Safe and reliable
Power providing asymmetric design

Electro Standards Laboratories & JSR Micro are co-exhibiting at the Energy Ocean International 10th Annual Conference & Exhibition in Rhode Island, June 10-12, 2013. www.energyocean.com
Electro Standards Laboratories
Power Conversion Electronics

This small buoy sensor system generates and accumulates energy that can be used to indefinitely power remote buoys equipped with sensor arrays as well as electronics for processing and communications. This power source can be integrated with buoy systems to minimize the size of batteries, or to eliminate the need for batteries if supercapacitors are used.

- Power electronics to fit into slim buoy, 5 x 25 cm (2 x 9.8 in).
- Wave energy stored to JSR Lithium Ion supercapacitor.
- Output DC system voltage regulation.
- Onboard sensors and data acquisition.
- Data storage >256 MB flash.
- Wireless communications for setup and data transfer.
- Sleep modes and low power operation when fully active.
- Intelligent processor for easy and effective adaptation to custom applications.

Deployed Energy Harvesting Buoy

This technology employs small electric generators that are resonantly driven via a surface buoy’s wave-induced heave motion. This configuration provides reliable operation without the need for additional gearing and has the ability to harness electrical power in the 1 to 10 Watt range in small sea states. (WMO Sea State 1: Calm)

Power Plot Example: (Sea State 1)

Example Buoy Response

Buoy resonant response (above) is designed to match the expected ocean wave spectrum (below) based on the deployment location.

Example Ocean Wave Spectra